Phân lớp dữ liệu mất cân bằng trong bài báo dự đoán thuê bao rời bỏ nhà mạng dựa vào giải thuật Rừng Ngẫu Nhiên cải tiến
Bài viết thử áp dụng giải thuật Rừng ngẫu nhiên có điều chỉnh hàm chi phí (cost-sensitive weighted random forest - CSWRF), vốn đã thành công trong bài toán phát hiện gian lận thẻ tín dụng (credit card fraud detection) để giải quyết vấn đề dữ liệu mất cân bằng trong bài toán dự đoán thuê bao rời bỏ nhà mạng. Ngoài ra, tác giả so sánh hiệu quả của giải thuật CSWRF với cách tiếp cận lấy mẫu dữ liệu: kết hợp giải thuật Rừng ngẫu nhiên với kỹ thuật lấy mẫu tăng SMOTE (Synthetic Minority Oversampling Technique).
Xin lỗi bạn không thể down load tài liệu này. Bạn có thể xem tài liệu trực tuyến trên website hoặc liên hệ thư viện trường để được hướng dẫn. Cảm ơn bạn đã sử dụng dịch vụ của chúng tôi.
Bạn vui lòng tham khảo thỏa thuận sử dụng của thư viện số.